2009年4月9日星期四

SVM解决多分类问题的方法

SVM算法最初是为二值分类问题设计的,当处理多类问题时,就需要构造合适的多类分类器。目前,构造SVM多类分类器的方法主要有两类:一类是直接法,直接在目标函数上进行修改,将多个分类面的参数求解合并到一个最优化问题中,通过求解该最优化问题“一次性”实现多类分类。这种方法看似简单,但其计算复杂度比较高,实现起来比较困难,只适合用于小型问题中;另一类是间接法,主要是通过组合多个二分类器来实现多分类器的构造,常见的方法有one-against-one和one-against-all两种。
a.一对多法(one-versus-rest,简称1-v-r SVMs)。训练时依次把某个类别的样本归为一类,其他剩余的样本归为另一类,这样k个类别的样本就构造出了k个SVM。分类时将未知样本分类为具有最大分类函数值的那类。
b.一对一法(one-versus-one,简称1-v-1 SVMs)。其做法是在任意两类样本之间设计一个SVM,因此k个类别的样本就需要设计k(k-1)/2个SVM。当对一个未知样本进行分类时,最后得 票最多的类别即为该未知样本的类别。Libsvm中的多类分类就是根据这个方法实现的。
c.层次支持向量机(H-SVMs)。层次分类法首先将所有类别分成两个子类,再将子类进一步划分成两个次级子类,如此循环,直到得到一个单独的类别为止。
对c和d两种方法的详细说明可以参考论文《支持向量机在多类分类问题中的推广》(计算机工程与应用。2004)
d.其他多类分类方法。除了以上几种方法外,还有有向无环图SVM(Directed Acyclic Graph SVMs,简称DAG-SVMs)和对类别进行二进制编码的纠错编码SVMs。

没有评论: